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It is shown that solitary-wave, kinklike structures can propagate superluminally in two- and four-level
amplifying media with strongly damped oscillations of coherences. This is done by solving analytically the
Maxwell-Bloch equations in the kinetic limit. It is also shown that the true wave fronts—unlike the pseudo
wave fronts of the kinks—must propagate with velocity c, so that no violation of special relativity is possible.
The conditions of experimental verification are discussed.
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I. INTRODUCTION

The propagation of optical signals in resonant linear and
nonlinear media has been one of the most important research
topics in quantum optics since the very beginning of that
branch of physics. Among the landmark discoveries in the
subject which have shaped our understanding of the resonant
interaction of radiation with atoms one should mention,
among other things, self-induced and electromagnetically in-
duced transparency, optical solitons, self-focusing, superradi-
ance, and propagation of photon echoes; see, e.g., �1–5�. In-
terest in the physics of pulse propagation has never ceased.
However, a new stimulus to its further development has re-
cently come from spectacular experiments demonstrating
propagation with superluminal group velocities and without
visible pulse deformation �6,7� as well as from experiments
with slowing down, stopping, and reversing light pulses
�8–14�. The theory of superluminal propagation was actively
developed as early as the 1990s, and work on it is continued
in the new century; see, e.g., �15–20�. In addition, superlu-
minal propagation of wavelike structures was considered
within the framework of the classical field theory and com-
pletely integrable systems �21,22�. In particular, the exis-
tence of very interesting solutions to a model completely
integrable Lorentz-invariant system has been reported in
�21�; those solutions describe the decay of a subluminally
propagating kink �“bradyon”� with the emergence of another
bradyon accompanied by a superluminally propagating kin-
klike wave which may be called a “tachyon.” Alongside the-
oretical developments, experimental demonstrations of su-
perluminal effects have in the meantime become almost
routine in increasingly simple systems, as shown, e.g., in
�23,24�.

Let us notice here that, to our knowledge, the majority of
studies concerning the superluminal propagation of electro-
magnetic radiation are related to the propagation of Gaussian
pulses or other pulses with well-defined group velocities. But
if one insists that “superluminality” is an effect which should
strongly resemble the breaking down of causality, pulses of
different type should be examined. Indeed, in vacuum, it is

not the group velocity that is in any sense important from the
point of view of special relativity. What is important is the
traveling discontinuity—that is, the wave front. It is the
propagation of the wave front of the electromagnetic field
that is the key for Einstein’s gedanken experiments with syn-
chronization and actually for the very definition of causality.
That wave front always propagates with velocity c.

The purpose of this work is to study the propagation of
solitary waves having the shape of kinks. Kinks are solitary
waves which can be characterized by a very-well-defined
front �called a pseudo wave front here� which, when it is
sufficiently steep, resembles discontinuity. Therefore, if we
find a kinklike structure with the superluminally propagating
pseudo wave front, the illusion of causality breaking would
reach its limitations. In that sense, we believe, experiments
with faster-than-c propagating kinks would be a maximum
that can be achieved at all from the point of view of “super-
luminality.”

The kinks to be described below propagate in a homoge-
neously broadened medium in which oscillations of the
atomic dipole moment are strongly damped, but in which the
decay of the population of the excited atomic state is slow.
We provide here an analytical discussion of the propagation
via an approximate solution to the Maxwell-Bloch equations
in their kinetic limit. We show that, under very reasonable
approximations, the system allows for the propagation of
kinks. If the medium is amplifying—i.e., if it is prepared
with larger-than-zero inversion—the kinks propagate with
superluminal velocity of their pseudo wave front. After some
discussion of analytical and numerical results, we explain
why the superluminally propagating kink does actually not
violate causality or special relativity.

The propagation of signals in an atomic medium is usu-
ally described within the slowly varying envelope approxi-
mation �SVEA�, which is also adopted here. This means, in
particular, that we are not able to describe the Sommerfeld
forerunners, which are always present in any dispersive me-
dium, linear or not, and which propagate always with the
velocity equal to c. The kinks that appear below are
the shapes of the envelope of the signal, and they are very
steep on temporal scales several orders larger than that asso-
ciated with the frequency of the carrier wave or that of the
atomic transitions. This point will be discussed below in
some detail.

The main part of this work is organized as follows. In Sec.
II we define the mathematical model of the two-level me-
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dium in which the kinks propagate and provide some
analytical solutions with their discussion. Section III is de-
voted to the presentation of related numerical results and the
demonstration that no causality breaking can actually hap-
pen. In Sec. IV we discuss a somewhat more complicated
model in which the “doubly superluminal” propagation of
the kink-antikink pairs can appear. Final remarks are con-
tained in Sec. V.

II. PROPAGATION IN TWO-LEVEL MEDIA: ANALYTICAL
RESULTS IN THE KINETIC LIMIT

We consider the propagation of electromagnetic radiation
in a medium which consists of two-level atoms. For our pur-
poses it will be sufficient to restrict ourselves to one-
dimensional propagation and to a single �TE� polarization of
the linearly polarized field. We assume that the medium is
such that the transverse decay rate �i.e., the decay rate of
oscillations of the atomic dipole moment� is much larger
than the coupling constant between the field and medium �as
expressed in units of frequency�. On the other hand, the cou-
pling constant is much larger than the longitudinal decay rate
�i.e., the decay rate of the population inversion in the atom�.
More precisely, it is assumed that the following chain of
inequalities holds true:

�,�0 � �T � ��x,t�,� � �L, �1�

where � is the frequency of the carrier wave, ��0 is the
energy gap between the two atomic levels, �T is the trans-
verse decay rate, ��x , t�=2d12F�x , t� /� is the Rabi frequency
associated with the propagating electric field, the frequency �
is given by

� = 2
N�d12�2�

��0�T
,

and �L is the longitudinal decay rate.
Since we restrict ourselves to the one-dimensional propa-

gation and a single polarization of the electromagnetic field,
we shall henceforth neglect the vectorial nature of the tran-
sition dipole moment d12 and of the envelope F, and will
simply write d12 and F.

The inhomogeneous broadening will be neglected here,
but it can and should be taken into account; we plan to do
this on another occasion.

The semiclassical Maxwell-Bloch equations which de-
scribe the dynamics of the system in one spatial dimension
within SVEA read �2�

�s22

�t
= i�s21 − s12�

d12F

�
− �Ls22, �2�

�s11

�t
= − i�s21 − s12�

d12F

�
+ �Ls22, �3�

�s12

�t
= − i	s12 − i�s22 − s11�

d12F

�
− �Ts12, �4�

�s21

�t
= i	s21 + i�s22 − s11�

d12F

�
− �Ts21, �5�

�F

�t
+

kc2

�

�F

�x
= − i

Nd12�

2�0
�s21 − s12� , �6�

��2 − k2c2�F = −
Nd12�

2

2�0
�s21 + s12� , �7�

where sij are slowly varying envelopes of the expectation
values of the atomic lowering and raising operators �for
i� j� as well as populations �for i= j�, k is the wave number
of the carrier wave, N is the number density of atoms, and 	
is the detuning of the carrier wave from exact resonance with
the atom.

From now on we consider only the case of exact reso-
nance, so that 	=0 and �=kc. We perform now the adiabatic
elimination of s12 and s21 �cf. �2��, which is possible because
of our assumption that �T is the largest available quantity of
the dimension of frequency except of �. In particular, �T is
much larger than the Rabi frequency associated with the
propagating field F.

After the free oscillations of s12 and s21 are damped, we
may write

s12 = − i
d12

��T
�s22 − s11�F , �8�

s21 = i
d12

��T
�s22 − s11�F , �9�

so that

�sz

�t
=

��s22 − s11�
�t

= −
4d12

2

�2�T
szF

2 − �Lsz − �L. �10�

For the slowly varying envelope of the electric field we ob-
tain

�F

�t
+ c

�F

�x
=

1

2
�szF . �11�

In the above equations sz is the population inversion.
It is a bit more convenient to work with the intensity,

rather than with the envelope F, and to employ dimension-
less quantities. Let the dimensionless time 
 be, by defini-
tion, equal to �t and the dimensionless spatial variable � be
equal to �x /c. In terms of 
 and � the velocity c is equal to 1.
Equations �10� and �11� may be rewritten as

�sz

�

= − szJ − �sz − � , �12�

�J

�

+

�J

��
= szJ , �13�

where

J =
2d12

2 F2

�2��T
,

and where �=�L /�. If �L is so small that � can be neglected,
we obtain, more trivially
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�sz

�

= − szJ . �14�

Our strategy is to gain intuition by solving Eqs. �13� and �14�
exactly, and then take into account the presence of � via the
numerical solution of Eqs. �12� and �13�.

Inspired by the truncated Painleve expansion method, we
have found the following general solution of Eqs. �13� and
�14� �26�:

sz�
,�� = −
�����

���� + �
 − ��
, �15�

J�
,�� =
��
 − ��

���� + �
 − ��
, �16�

where ���� and �
−�� are arbitrary functions of their argu-
ments and a prime denotes differentiation over the argument
of the respective function. The natural boundary conditions
to be imposed are such that, for 
→−�, J approaches zero,
while sz becomes a constant; the latter will be called w0. If
the system has not been prepared in a special way, one has
w0=−1. Let us choose the function  to be the simple expo-
nent

�
 − �� = A exp�a�
 − ��� ,

where a and A are positive constants. Then the solutions
which satisfy the above boundary conditions are given by

sz =
w0�0 exp�− w0��

�0 exp�− w0�� + A exp�a�
 − ���
, �17�

J =
aA exp�a�
 − ���

�0 exp�− w0�� + A exp�a�
 − ���
, �18�

and have the form of kinks. The most natural definition of
the velocity of a kink is that it is equal to the velocity of the
region of the fastest change of the dependent variable. To
make this definition quantitative, let us define the velocity of
the kink as the velocity of its inflection point, which is at the
“center” of the kink, at the half of its height. Now, for the
kinks in the solutions �17� and �18�, the velocity of the in-
flection point is easy to obtain by calculating second deriva-
tives over �. This way we obtain the velocity

v =
a

a − w0
, �19�

which means that for positive w0 the kink propagates super-
luminally and its velocity grows with growing inversion w0.

A simple interpretation of the solutions �17� and �18� fol-
lows directly from the intuitive meaning of the equations of
motion �13� and �14�. The pulse of the light in the medium
does not so much propagate but appears to be “built” from
the positive inversion. The rate of change of the inversion is
proportional to the intensity. When the intensity grows
slowly, the inversion diminishes slowly as well, but with
increasing intensity the decrease of inversion becomes very
fast, to slow down again when the inversion itself is close to
zero. In this way kinks are formed. The inversion and inten-

sity conspire to preserve the shapes of each other.
As mentioned before, the superluminal solutions shown

above are particularly attractive because the kinks possess a
very well-defined pseudo wave front resembling discontinu-
ity. Thus, the propagation of a kink having the inflection
point moving with velocity larger than c seems to be rather
spectacular, making the illusion of superluminality almost
true, especially that the shape of the signal is preserved.

Before proceeding further to somewhat more realistic
kinks to be dealt with numerically, let us show that the ana-
lytical solutions do not break fundamental assumptions of
the SVEA. On returning to the original variables x and t, and
calculating the derivative, we find the ratios

��F/�x�
��/c��F�

=
1

2
�w0 − a�

�

�

��0e−w0�x/c�
��0e−w0�x/c + Aea��t−x/c��

�
1

2
�a − w0�

�

�
,

�20�

��F/�t�
��F�

=
1

2
�a�

�

�

��0e−w0�x/c�
��0e−w0�x/c + Aea��t−x/c��

�
1

2
�a�

�

�
. �21�

Thus, we can see that if the constant a is of the order of 1,
the above ratios are very small indeed because of our as-
sumptions about � and �. Similar relations hold for the ratios
of second to first derivatives:

��2F/�x2�
��/c���F/�x�

�
5

2
�a − w0�

�

�
, �22�

��2F/�t2�
���F/�t�

�
5

2
�a�

�

�
. �23�

The important point here is that the pseudo wave fronts of
the kinks are very steep on the time scales related to �, but
on the time scales associated with the period of oscillations
of the atomic dipoles the kinks can look completely flat. The
increase in the amplitudes from zero to their maximal values
happens in nanoseconds, not in femtoseconds.

III. NUMERICAL RESULTS FOR THE PROPAGATION OF
KINKS IN TWO-LEVEL MEDIA AND THE DYNAMICS

NEAR THE WAVE FRONT

Our tasks are now, first, to prove that the presence of
nonzero �L does not spoil the superluminal kink propagation;
second, to sketch the idea of the appropriate experiment; and
finally, to show explicitly that the true wave front propagates
with the velocity c, as it must.

To deal with the first problem, we have solved numeri-
cally Eqs. �12� and �13� with the help of a homemade pro-
gram based on the split-operator algorithm. The algorithm
has been proved to be stable, and the results have been
checked with the help of the method of lines based on the
fourth-order Runge-Kutta solver. The results for the propa-
gation of the signal, which at �=0 has the form

Jexc�
� =
J0

1 + e−a�
−20� , �24�

with a=1 and J0=1, are shown in Fig. 1�a�.
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Inside the medium, the intensity was initially equal to
zero, while w0=1/2. The medium was not infinite, but it
occupied the region 20���60. Thus, Fig. 1�a� shows the
situation at the time when the pseudo wave front had already
passed through the medium. Figure 1�a� shows also a signal
which would have propagated in the vacuum if it had the
boundary shape given by Eq. �24�. Such a signal would have
had the form

Jexc�
,�� =
J0

1 + e−a�
−20−�� .

Superluminal propagation of the pseudo wave front of the
kinks is clearly visible, so that the presence of the longitudi-
nal decay does not change the conclusions drawn from the
simplified analytical model where the damping is absent.

What is more, we also considered the kink-antikink pair
propagating under the same conditions. It is displayed in Fig.
1�b�. It is clear that both pseudo wave fronts of the pair
propagate superluminally in the same direction. Experiment-
ing with other parameters of the system we observed that the
longitudinal decay larger than �6�10−3� precludes faster-
than-c propagation. This is quite obvious because the me-
dium ceases to be amplifying for faster decay of the excited-
state population. What is more, for J0 substantially different
from 1 �as well as for w0� +1� the kink �or the kink-antikink
pair� becomes strongly deformed. The value J0=1 corre-
sponds to the maximal Rabi frequency of the applied field
�max equal to the geometric mean of �T and �, �max=��T�.
Thus, it seems the values of parameters chosen when plotting
Fig. 1 are close to the optimal ones. This leads us to the
consideration of the problem of realizing our superluminal
kinks in the laboratory. First, we believe that obtaining in-
verted populations in a sample of two-level atoms �for the
purpose of getting w0�0� has been rather routinely per-
formed in recent experiments. For instance, our excited state
can be thought of as a middle �lower excited� level in a
pumped three-level system. The pump field couples the
ground state with the higher excited state. It is assumed that
the population of the latter state incoherently decays very
fast to populate the lower excited state, while the pump field
does not couple it with the ground state. Also, the rate of
decay from the middle state to the ground state �this is our
�L� is very small. When the population of the middle level is
sufficiently large, the probe �kinklike� excitation comes to
couple the middle state with the ground state. To maintain
positive inversion in the sample, the pump field can be kept
turned on, but the inversion should not be exceedingly large.
To control the velocity of the kink in the medium as given by
Eq. �19�, we have to be able to control the amplitude and
steepness of the applied signal.

The inequalities to be satisfied by the parameters of the
system lead to the following numbers: for optical frequencies
of the applied field of the order of 1015 Hz, we should have
�L�2.5�107 Hz, ��5�109 Hz, �max�5�1010 Hz, and
�T�5�1011 Hz, so that �max���T�. To check whether we
can obtain superluminal kink propagation when those strict
conditions for the parameters are not fulfilled, we have also
performed a numerical analysis of the full Maxwell-Bloch
equations within the SVEA. Its results are displayed in Fig.
2. Note that, while the unit of time in Fig. 1 is 1 /�, it is
rather 1 /�T in Fig. 2. The parameters of the system used to
plot Fig. 2 were the following: �max=0.22�T, �=0.05�T, and
�L=3�10−4�T. Thus, both � and �max were quite large when
compared with �T, so that the system was not exactly within
the regime of the kinetic limit. And yet, the superluminal
propagation of the pseudo wave front of the kink as well of
the kink-antikink pair is clearly visible when compared with
analogous objects which would propagate in vacuum �drawn
with a dashed line� while satisfying the same boundary con-
ditions.

We believe that the relative stability of the kink-antikink
pair observed here can be attributed to two facts. First, the
time of the simulation is short. Second, the spatial region
occupied by the amplifying medium is finite. The important
factors here are �i� the time spent by the pair inside the am-

FIG. 1. Snapshots of �a� kink and �b� kink-antikink pair com-
pared with the same objects which would have propagated at the
same time in vacuum. In �a�, the kink propagated through the two-
level medium with the initial inversion w0=0.5, occupying the spa-
tial region from �=20 to �=60. The longitudinal decay rate �L was
equal to 3�10−3�, and the maximal amplitude of the intensity was
equal to 1. The kink which propagated through the two-level me-
dium �solid line� is displayed together with the same kink which
would have propagated in vacuum. The snapshot was taken at 

=100. In �b�, the same comparison is displayed, but for a kink-
antikink pair. The decay rate is �L=5�10−3, and the other param-
eters are the same as in �a�. The snapshot was taken at 
=200.
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plifying medium and �ii� the initial value of the inversion w0.
We have observed in our simulations that if the layer of the
atomic medium is about 4 times thicker than in Fig. 1�b� �so
that the kink-antikink pair remains inside the medium for
about 4 times longer�—and all other parameters are kept
unchanged—the pair becomes very strongly deformed. This
happens through the strong damping of the kink part of the
pair because the medium is no longer amplifying for large
times since the inversion becomes lower than zero. On the
other hand, if the initial inversion is close to 1, a very high
peak close to the “true” wave front is formed, completely
breaking the symmetry between the kink and antikink parts

of the pair. In any case, the pair eventually becomes dis-
rupted. The values of parameters with the help of which our
figures were plotted had resulted from an extensive numeri-
cal experimentation, guided, on the one hand, by the issue of
the pair stability and, on the other hand, by the need to keep
them experimentally accessible. Indeed, let us stress here that
the spatial size of the medium in Fig. 1, equal to 	�=40 in
dimensionless units, corresponds to 	x=240 cm, which is
certainly realizable in the laboratory.

Finally, let us consider the problem of whether the super-
luminal propagation of the pseudo wave front of the kink
violates special relativity. To do this, let us study the struc-
ture of solutions of Eqs. �12� and �13� near the true wave
front of the envelope. One has to distinguish here between �i�
the wave front of the complete signal �given by solutions to
the full Maxwell-Bloch equations without the SVEA�, �ii�
that of the slowly varying envelope �as obtained from the
Maxwell-Bloch equations within the SVEA�, and, finally,
�iii� the wave front of the envelope in the kinetic limit. For
our purposes, it is sufficient to investigate the last of the
three wave fronts. The full analysis of the former ones will
be given elsewhere �27�. Naturally, we should first determine
precisely where the wave front is—i.e., what its velocity can
be equal to. To determine this, we adopt the method due to
Whitham �28� �Chap. 5.6� and expand sz and J in powers of
the variable �=�−X�
� with time-dependent coefficients,

sz��,
� = 	
n=0

sz
�n��
��n �25�

and

J��,
� = 	
n=0

J�n��
��n, �26�

near an exact space-independent solution of the system. Here
X�
� is the position of the wave front to be determined. In the
original Whitham’s treatment the zeroth-order term is simply
a constant, but here we allowed it to be time dependent. On
the right-hand side of the wave front, J should be zero since
the signal has not yet arrived there, while sz should evolve
freely—that is, sz= �w0+1�exp�−�
�−1. Let us notice that
J=0 and sz= �w0+1�exp�−�
�−1 are special exact solutions
to Eqs. �12� and �13�. Thus, we write

sz
�0��
� = �w0 + 1�exp�− �
� − 1, �27�

J�0��
� = 0. �28�

On substituting the expansions �25� and �26� for Eqs. �12�
and �13�, equating the expression standing on both sides at
the same powers of �, and using Eqs. �27� and �28�, we
obtain, in zeroth-order,

− sz
�1��
�Ẋ�
� = 0,

− J�1��
��Ẋ�
� − 1� = 0,

where the overdot denotes differentiation over 
. Thus, there

are only two possibilities: either Ẋ=0 and J�1�=0 �with sz
�1�

being still undetermined� or Ẋ=1 and sz
�1�=0, while J�1� is to

FIG. 2. Snapshots of the kinklike structures obtained from nu-
merical solutions of the Maxwell-Bloch equations within the SVEA
but without taking the kinetic limit. Snapshots of �a� kink and �b�
kink-antikink pair which propagated in the two-level medium are
compared with an analogous kink-antikink pair which would have
propagated at the same time in vacuum. The boundary conditions at

=0 are the same. The unit of time was equal to 1/�T, the unit of
space c /�T. In �a�, the kink has propagated through the two-level
medium with initial inversion w0=0.5, occupying the spatial region
from �=400 to �=600. The longitudinal decay rate �L was equal to
3�10−4�T, the maximal Rabi frequency of the electric field was
equal to 0.22�T, and the frequency �=0.05�T. The kink which
propagated through the two-level medium �solid line� is displayed
together with the same kink which would have propagated in
vacuum. The snapshot was taken at 
=1400. In �b�, the same
comparison is displayed, but for a kink-antikink pair, and the
other parameters are the same as in �a�. The snapshot was taken at

=2800.
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be determined from a higher-order equation. The former pos-
sibility leads to the trivial solution with all J�n�=0 only �let us
notice, though, that this is not true for the Maxwell-Bloch
equations without kinetic limit�. The remaining possibility is

that Ẋ=1, so that the velocity of the true wave front of the
envelope in the kinetic limit is still equal to c in the standard
units. For J�1��
� we obtain the following solution from the
first-order terms in �:

J�1��
� = J�1��0�exp
w0 + 1

�
�1 − e−�
� − 
� ,

which means that the system is linearly unstable for w0�0,
but only as long as 
 is smaller than, approximately, 1 /�. In
particular, the wave front of the envelope gets steeper, which
is quite an intuitive result. Similarly, from the first-order
terms in � we obtain sz

�2�:

sz
�2� = C exp
w0 + 1

�
�1 − e−�
� − 
 − �
��1 − e�
 + w0� ,

where C is a constant. Thus, in addition, we can conclude
that the behavior of the inversion is smoother than that of the
intensity, since the former exhibits the discontinuity of the
second derivative, while it is the first derivative of the inten-
sity which is discontinuous at the wave front. But the crucial
result of the above simple calculations is the velocity of the
true wave front of the envelope, being equal to 1 or c in the
standard units. Let us notice by the way that the fact that
only the first derivative of J, and not J itself, is discontinuous
should be attributed to the nonexistence of nonzero constant
solutions for the intensity.

We have defined the true, “genuine” wave front as the
surface in space-time on which either the field itself or any of
its derivatives exhibit discontinuity. This notion is a gener-
alization of the standard, intuitive concept of the wave front
as the surface which divides the space into two regions: that
where the field is already present and that which has not yet
been reached. Following the classic arguments of Einstein’s
theory of relativity, the existence of such surfaces of discon-
tinuity is a condition of the very existence of the causality
principle. On the other hand, along the slope of the kink
there is no discontinuity of either the field itself or its deriva-
tives: the slope may be very steep, but it is still smooth. As
such, it cannot be called the true wave front. However, from
the experimental point of view, registering the true wave
front is extremely difficult. On the contrary, the pseudo wave
front formed by the slope of the kink is detectable, and when
observed in a laboratory, it would strongly resemble the dis-
continuity. This is the reason why the kinklike solutions are
so interesting.

Let us finally notice that the near-the-wave-front analysis
which we employed following Whitham holds for arbitrary
signals and not just kinks. Thus, in our system we have to do
with two frontlike solutions, one of them luminal and the
second superluminal.

IV. PROPAGATION OF KINKS IN FOUR-LEVEL MEDIA
WITH REVERSE SATURATION

In the above example, we have shown that either the
pseudo wave front of a kink or one of the pseudo wave fronts
of the kink-antikink pair can propagate superluminally. How-
ever, one can find a related system in which both pseudo
wave fronts of the kink-antikink pair propagate superlumi-
nally in opposite directions. Namely, let us consider a system
of two kinds of atoms coupled to the electromagnetic field as
shown in Fig. 3.

Atoms of the first kind are coupled to the field in the N
configurations with reversed saturation. It is assumed that the
decay rates �L4 and �L3 are so large that the populations of
the third and fourth levels are effectively zero, so that s11
+s22�1. What is more, it is assumed that the transverse
decay rates are much larger than �L2. They should also be
much larger than the Rabi frequency of the propagating field
�at any spatial point�. Under those conditions the nondiago-
nal expectation values of the atomic operators can be adia-
batically eliminated.

The atoms of the second kind are coupled to the field in a
V configurations, with the pump field having the Rabi fre-
quency �. It propagates perpendicularly to the direction of
propagation of the probe field, the latter having the slowly
varying amplitude F, and it is assumed that 2d12F /���.
The pump field couples the first and third levels, and keeps
the population of the second level almost constant since it is
assumed that �L32��L21. This subsystem is actually very

FIG. 3. Energy-level scheme of the two kinds of atoms which
constitute the system. The superscripts �1� and �2� refer to those two
atomic subsystems. The first subsystem contains four-level atoms
coupled to the probe field in the N configuration, and the longitu-
dinal decay rates �L3, �L4 are supposed to be much larger than �L2.
The system subsystem consists of three-level atoms coupled to both
the pump field of the Rabi frequency � and to the probe field
having the slowly-varying amplitude F. It is assumed that � is
much larger than 2d12F /� and that �L32��L21, so that the inversion
s22

�2�−s11
�2� is approximately constant, and the atoms of the second

kind are coupled to the field approximately linearly.
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similar to the one considered previously, but now we must
require that the pump field be turned on all the time. We also
assume that the decay of oscillations of the dipole moment is
much faster than that of the population of the second level.
Under those conditions the system of three-level atoms
works as a linear amplifying medium. Thus, the equations of
motion for the population of the ground state of the four-
level system and those for the dimensionless intensity L of
the probe field read �cf. �25��

�s11

�

= − s11L + �2�1 − s11� , �29�

�L

�

+

�L

��
= �� − 1�s11L + �� − ��L , �30�

where 
=�t and �=�x /c are dimensionless temporal and
spatial variables, �=2N�1�d13

2 � / ���0�T1
�1��, L is a dimension-

less intensity, L= �2d13F�2 / �2�2�T1
�1���, and � is the ratio

d24
2 �T1

�1� / �d13
2 �T2

�1��. The constants �T1
�1� and �T2

�1� are the decay
rates of oscillations of s13 and s24, respectively. The super-
script �i� indicates that the parameters refer to the atoms of
the ith kind, i=1,2. The dimensionless decay rate �2 is equal
to �L21/�. The constant � depends, naturally, on the Rabi
frequency � of the pump field. Let us notice that the velocity
c is again equal to 1 in terms of the above variables.

The above system of equations admits the following exact
solution in terms of the kinklike solitary waves:

s11 = 1 −
� − 1

� − 1

�1 exp�a�b
 − ���
�0 + �1 exp�a�b
 − ���

, �31�

L = ab
�1 exp�a�b
 − ���

�0 + �1 exp�a�b
 − ���
, �32�

where a= ��−1� / �b−1� and

b =
�2

�2 + � − �
�33�

is the velocity of the pseudo wave front of the kink. There
are three regimes in which the above solution is physically
meaningful �which means that 0�s11�1 and L�0�: �i�
����1 �then 0�b�1�; �ii� ����1, �2��−� �then
b�1�; and �iii� ����1, �2��−� �then b�0�. In the
third regime of parameters we obtain the pseudo wave front
of the kink propagating backwards—that is, in the direction
opposite to that of the carrier wave. What is more, if the
condition �−2�2����−�2 is fulfilled, we have b�−1;
i.e., the backward propagation of the pseudo wave front is
superluminal. To check whether the above rather exotic be-
havior can be observed under more realistic conditions, we
analyzed numerically the behavior of a kink-antikink pair. To
integrate Eqs. �29� and �30� we again employed a homemade
FORTRAN program based on a split-operator algorithm. The
results were checked with the help of a method-of-line solver
based on the fourth-order Runge-Kutta algorithm, using the
routine ROCK4.F, freely available on the Internet. The initial
conditions were taken as

s11��,0� = 1 −
� − 1

� − 1

�1 exp�a��1 − ���
�0 + �1 exp�a��1 − ���

, �34�

L��,0� = ab�1
 exp�a��2 − ���
�0 + �1 exp�a��2 − ���

−
exp�a��3 − ���

�0 + �1 exp�a��3 − ���� , �35�

with �0=�1=1. The results are shown in Fig. 4, where the
location of the kink-antikink pair was displayed for two
times 
=0 and 
=50. The parameters used to plot Fig. 4
were �=1.255, �=1.24, and �2=0.01, so that b=−2. Part �a�
of Fig. 4 illustrates the situation for �1=�2=300, �3=800, so
that the central part of the curve of the initial population
matches the central part of the initial pseudo wave front of
the antikink. On the other hand, part �b� was obtained when

FIG. 4. Snapshots of the kink-antikink pair given by numerical
solutions of the Maxwell-Bloch equations in the kinetic limit for the
medium containing two kinds of atoms as specified in Sec. IV: �a�
The kink-antikink pair at 
=50 �solid line� and at 
=0 �dashed
line�; at 
=0, the central parts of the slope of the initial ground-state
population matched the central part the antikink part of the initial
intensity �see the text�. �b� The same as in �a� but for the mismatch
in the initial central parts of the population kink and the intensity
antikink. Refer to the text for parameters. The time unit was equal
to 1/� in both �a� and �b�.
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there initially was a mismatch—that is, for �1=500 with
other �’s as before. It is clear from that figure that the left
pseudo wave front traveled a distance approximately equal to
	�=100, which agrees well with the theoretical predictions
given by Eq. �33�, while the right pseudo wave front also
traveled superluminally with velocity approximately equal to
1.5. Let us notice that the kink-antikink pair remained almost
undeformed in shape in �a�, although the pulse became much
broader. On the other hand, the mismatch in the initial con-
ditions leads to a strong distortion of the signal �as seen in
Fig. 4�b��, although our conclusions about the velocities of
both pseudo wave fronts remain intact.

Experimental verification of the above predictions seems
difficult. It is required that, when the kink-antikink pair en-
ters the medium, the population of the ground state should be
prepared according to Eq. �31�. Ideally, the central part of the
pseudo wave front of the kinklike population of the ground
state at 
=0 would match the center of the pseudo wave front
of the antikink part of the pair. What is more, if the ampli-
tude of the pair significantly differs from that of Eq. �32�, the
pair becomes strongly deformed. Nevertheless, the feature of
the superluminal propagation of both pseudo wave fronts is
maintained. We believe that the predictions given above are
so interesting that they would justify the effort of verification
in the laboratory.

V. FINAL REMARKS

To summarize, we have shown that a system of two-level
atoms with inverted populations and strong damping of the
dipole moment is a medium in which kinklike solitary waves
can travel with superluminal velocity of the pseudo wave
front. This should be particularly attractive for experimental
verification because the pseudo wave front of the kink
strongly resembles the genuine wave front of the electromag-
netic field as it propagates in vacuum. Because of that, we
believe that our proposal is, so to say, the “utmost” or “maxi-
mal” one. That is, in the context of matter-field interactions,

there are, basically, no other circumstances under which the
illusion of causality breaking could come closer to reality.
We have also discussed the requirements for the possible
experimental realization of superluminal kinks. It has been
shown numerically that those solitary waves can survive the
presence of nonzero longitudinal damping. We have also
found that the true wave front of the envelope propagates
with the velocity c, as expected, so that there is no violation
of Einstein’s theory of relativity. The behavior of the inten-
sity of the signal and the inversion near the true envelope
wave front have been characterized quantitatively. What is
more, we have found a system in which the pseudo wave
front of the antikink structure can also propagate superlumi-
nally in a direction opposite to that of the carrier wave. This
can happen, for instance, in a medium composed of �a� four-
level atoms in the N configuration and �b� three-level atoms
under the presence of external pumping. Our predictions
about superluminal backward propagation of the pseudo
wave front of the antikink follow from an analytical solution
confirmed by numerical calculations. The latter has also led
us to the prediction of the superluminal propagation of both
pseudo wave fronts of the kink-antikink pair. Thus, we can
have to do with both the superluminal and reversed propaga-
tion of the same signal, and the reversed propagation is also
faster than c.

Our analytical solutions have been shown, a posteriori, to
satisfy conditions of validity of the main approximation em-
ployed, which is the slowly varying envelope approximation.
Our numerical solutions also satisfy those conditions because
of several temporal scales present in the system. In the time
scale associated with a frequency �, the change of the inten-
sity or inversion can be very fast near the pseudo wave front,
but in the time scale associated with the frequency of the
carrier wave the slope of pseudo wave fronts is very small.
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